Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Symmetry properties of the order parameter are among the most fundamental characteristics of a superconductor. UTe2, which was found to feature an exceedingly large upper critical field and striking reentrant behavior at low temperatures, is widely believed to possess a spin-triplet pairing symmetry. However, unambiguous evidence for such a pairing symmetry is still lacking, especially at zero and low magnetic fields. The presence of an inversion crystalline symmetry in UTe2requires that, if it is indeed a spin-triplet superconductor, the order parameter must be of odd parity. We report here phase-sensitive measurements of the symmetry of the orbital part of the order parameter using the Josephson effect. The selection rule in the orientation dependence of the Josephson coupling between In, ans-wave superconductor, and UTe2suggests strongly that UTe2possesses the odd-parity pairing state of B1usymmetry near zero magnetic field, making it a spin-triplet superconductor. We also report the apparent formation of Andreev surface bound states on the (1−10) surface of UTe2.more » « lessFree, publicly-accessible full text available February 13, 2026
- 
            Free, publicly-accessible full text available February 13, 2026
- 
            Recently, evidence for a conducting surface state (CSS) below 19 K was reported for the correlatedd-electron small gap semiconductor FeSi. In the work reported herein, the CSS and the bulk phase of FeSi were probed via electrical resistivity ρ measurements as a function of temperatureT, magnetic fieldBto 60 T, and pressurePto 7.6 GPa, and by means of a magnetic field-modulated microwave spectroscopy (MFMMS) technique. The properties of FeSi were also compared with those of the Kondo insulator SmB6to address the question of whether FeSi is ad-electron analogue of anf-electron Kondo insulator and, in addition, a “topological Kondo insulator” (TKI). The overall behavior of the magnetoresistance of FeSi at temperatures above and below the onset temperatureTS= 19 K of the CSS is similar to that of SmB6. The two energy gaps, inferred from the ρ(T) data in the semiconducting regime, increase with pressure up to about 7 GPa, followed by a drop which coincides with a sharp suppression ofTS. Several studies of ρ(T) under pressure on SmB6reveal behavior similar to that of FeSi in which the two energy gaps vanish at a critical pressure near the pressure at whichTSvanishes, although the energy gaps in SmB6initially decrease with pressure, whereas in FeSi they increase with pressure. The MFMMS measurements showed a sharp feature atTS≈ 19 K for FeSi, which could be due to ferromagnetic ordering of the CSS. However, no such feature was observed atTS≈ 4.5 K for SmB6.more » « less
- 
            Abstract The shape of 3d-orbitals often governs the electronic and magnetic properties of correlated transition metal oxides. In the superconducting cuprates, the planar confinement of the$${d}_{{x}^{2}-{y}^{2}}$$ orbital dictates the two-dimensional nature of the unconventional superconductivity and a competing charge order. Achieving orbital-specific control of the electronic structure to allow coupling pathways across adjacent planes would enable direct assessment of the role of dimensionality in the intertwined orders. Using CuL3and PrM5resonant x-ray scattering and first-principles calculations, we report a highly correlated three-dimensional charge order in Pr-substituted YBa2Cu3O7, where the Prf-electrons create a direct orbital bridge between CuO2planes. With this we demonstrate that interplanar orbital engineering can be used to surgically control electronic phases in correlated oxides and other layered materials.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
